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PROBLEM OF FILTRATION FROM A SYSTEM OF CHANNELS AT THE BORDER ZONE 
SEPARATING FRESH WATERS FROM SALINE WATERS LYING BELOW, WITH EVAPORATION* 

E.N. BERESLAVSKII and V.N. EMIKH 

Methods of the analytic theory of linear differential equations are used to solve 
the problem of steady filtration from a system of channels in a boundary separating 
fresh water from saline water lying below it, with evaporation given in the fern of 
a linear dependence of the stream function on the abscissa. A sequential computa- 
tional algorithm based on the solution, is given. It is explained that the system 
of flow in question can be realized only in the case when the initiai depth of the 
saline water exceeds a certain value dependent on the remaining initial parameters 
at which the boundary degenerates into a chain of lenses. Such a minimum depth 
admissible in the border zone scheme is found in every variant by preliminary com- 
putation of the lens using a previously obtained analytic solution of the corres- 
ponding problem /l/; the problem itself is solved in /2/ for the general linear law 
of evaporation. 

1. Formulation of the problem. A plane, steady state filtration takes piace in a 
fresh water border zone formed in a homogeneous layer of soil above stagnant saline water 
from a system of periodically distributed channels with rectilinear contours with profiles of 
width 21, and low depth of water. The influx of water into the border zone is compensated 
by its evaporation from the free surface. Neglecting the thickness of the transition zone, 
we shall follow an approach adopted in problem of this type /l- 3/ and begin with the fact 
that a boundary line exists separating fresh water from the saline water. Fig.1 depicts 
schematically one of the half-periods of the flow (region z) ; the depression curve RC and 
separation line ED are to be determined. The following conditions hold along the boundary 
of the region .z: 

AB:y = 0, cp = 0; AE:s = 0, 1c'= 0; CD:x = L,$, = 0 (i.1) 

ED :'p - py = C, = con&, $ = 0 (p = p2 p1 - 1) 

BC :cp +y = 0, II, = ~(t -x) 

Here m and 9 are self-conjugate functions harmonic within the region z and representing the 
filtration rate potential and stream function relative to the soil filtration coefficient, 
L is half-distance between the centers of adjacent channels, p1 and pz are the densities of 
the fresh and saline water and (pz> pr). The first relation of (1.1) for the segmentEDcomes 
from the assumption that the saline water is stagnant and that the pressure remains continu- 
ous during the passage across the boundary line /3/. According to the last relation of (1.1) 
the amount evaporated from a certain segment of the depression curve is proportional to the 
length of the horizontal projection of this segment /l/. 

The quantities L, 1, e,p, serve, subject to the conditions 

(I< l< L, (I< E< p, E(L - l)< 1 (1.2) 

as the physical defining parameters, together with the depthH,of the initial (prior to forma- 
tion of border) surface of the saline ground water. If the latter, being incompressible, is 

isolated from sources and sinks, then their displacement under the channels must be compensat- 
ed by their rise between the channels without change in volume, and this yi.eLds the relation 

(Fig-l) 

s [$,ED (z) + H,] dx = 0 (1.3) 

D 

Below we shall explain that in this approach the quantity H,is bounded from below by some 
value H,, depending on L, 1, E and (r. When H,< H,, 7 the border decomposes into separate 

lenses. The last inequality of (1.2) means that, in the presence of backwater effect, the 
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reduced filtration discharge from the channel equal, under the conditions of steady state flow 

to total evaporation E(L - 1) from the free surface of the border , must not exceed the flow 

rate 1 of the unrestricted filtration. 
We shall mention another possible variant of the formulation under which the border is 

underlayed with mineralized water bound to a strongly permeable level lying below it andacted 
upon by a some constant (by virtue of its immobility) piezometric pressure h. In this case 
the first condition of (1.1) on the segment ED written e.g. for the point E, yields direct- 
ly (see also /3/, ch.VlII, formula (10.2)) 

(PE - f%E = (P&x) h 

The expressions for quantities (PEI YE are the same as for ysn fz) in (1.3) are obtained from 
the solution of the problem. 

2. Constructing the solution. For the flow scheme in question the segments (or 
their continuations) of the boundary of the velocity hodograph w -- W, + ilV, shown in Fig.2 
have no common point, and this prevents us from solving the problem by known methods of con- 
formal mapping /4/. We shall therefore use the P.Ia. Polubarinova-Kochina method based in 
the application of the analytic theory of linear differential equations (/3/, ch.ViI). We 
introduce the functions z(c) and o(c), which map conformally the regions z= r $- iy and o= 
'p-i iq onto the half-plane Im 5 >O of the auxilliary complex variable 5 fFig.3a) and are to 
be determined. The functions 

Fig.1 Fig.2 

Z(5) =dzldS, Q(r;)= +/df 

represent solutions of certain second order linear differential 
singularities represented by the singularities of the functions 
ral 1'(j) of this equation can be represented by the following 
indices at the singularities: 

(2.1) 

Fuchsian equation with regular 
z and o. The general integ- 
Riemann symbol oontaining the 

We pass to the function Y'(5) using the transformation 

Y(5)= Y"(?X12 Y‘%- &)5(1- &(I - &)I (2.3) 
and we eliminate during the passage the removable singularity A. 

The differential equation the general integral of which is represented by the function 
Y"(5). has the form /5/ 

where p and ?Q are unknown auxilliary parameters. 
dependent solutions Y,' 

We assume that two particular, linearly in- 
and Y,'of (2.4) have been found; then, taking into account (2.1) we 

can write 



w=w,- i[y, = + = _$_ = x_ 
2 (2.5) 

Q” = ClY1” f &?Y?“, z==cBYlsi I’.’ c4 2 

Functions ,??,a" are connected with the func- 
tions Z and Qby (2.3), and cl, .,.. cI arecert- 
ain constants. Using the substitution 

5 = sn2 (2Kw, k) 12.6) 

we map the half-space Im< > 0 onto a rect- 
angle (Fig.3b), whereupon (2.4) becomes 

&-r/z -4 
b C 

Fig.3 

d”y 
-- 
dw2 2A;'sn(zK~~,k)cn(2K~, k)dll(2Kw, k)g + 

A;'[Psn*(2Ku>,k)+ hj= 0; A,=snZ(2Kw,k)- sn*(2Kwo, k) 

(2.7) 

Here sn, cn, dn are analytic Jacobi functions, K 
with modulus k /6,7/, the latter unknown just as 
plane connected with the parameter f. by (2.6). 

In view of the similarity between (2.7) and 
/8/, the functions Yl,t in the form 

is the total elliptic integral of first kind 
the coordinate w0 of the point F in the ID- 

the L& equation we shall take, following 

K'= K(k’), k’=fT=ZT (2.8) 

We shall retain the notation used in /7/ for 6, and other theta functions. 
Substituting (2.8) into (2.5) we obtain for W(W) the representation in which the real 

parameter a and the ratios of three of the constants 4, . . . . q to the fourth constant differ- 
ent from zero, are all unknown. To find them we use the correspondence of the corner points 
of the regions u) and W, and the fact that the segment ED lies in the plane Wof the cir- 
cumference 1 W+ ipI21 = p2/4. As a result we obtain 

(2.9) 

Using direct substitution and the properties of theta functions /7/ we can establishthat 

the function WY(w) given by (2 .5) ,(2.8) and (2.9), maps the rectangle w onto the velocity 

hodograph tt?. The functions z"(w),Q"(w) are also determined with the accuracy of up to a 

constant. Considering further dzjdw and doldw, as unknown functions we. obtain, by virtue 

of (2.1), (2.3) and (2.61, 

Y (w) = Y (5) d</dw = Y” (w)/& (2.10) 

A,=sna(2Kw, k) -ssn2(2Kw~,k) 

where p(w)is the general integral of the equation satisfied by the above functions, The 

relations (2.5) and (2.8)- (2.10) lead to 

d= A Pb, (IO - a, x) + e -%, (In + CL, x) 

7rl’ 64 (WV X) q 

It can be shown that the functions (2.1) determined from (2.11) and (2.6) satisfy the bound- 
ary conditions (1.1) written in terms of the above functions, and represent therefore a para- 

metric solution of the initial boundary value problem. We further find 

(2.12) 
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The coordinate ID,, of the point of inflection F of the line of separation ED (Fig-l) sat- 
isfies the following equation resulting from the relation W'(w,)= 0 (Fig.2,3), (2.12) and 
known /8,9/ relations connecting the function 6, with the Jacobi zeta function Z(u): 

z [2K (w. - a)1 - Z [2K (ulCl + 41 = 0 (2.13) 

Using the properties of zeta functions /9/ we can show that equation (2.13) has, at any value 

of a E (0, l/J , a unique solution wO E (0, l/J. Since the function (2.8) satisfies the equat- 
ion (2.7), its left-hand side should become identically zero in the rectangle u, (Fig.3b) after 
substituting into it the above functions, and by virtue of its double periodicity,also in the 
whole m-plane. This leads, after the relevant transformations, to the following system of 
equations in terms of the parameters w,,, TV and h: 

h = [Z2Qcd) - k2sn2 (2aK, k)] sn* (2Kw,, k) (2.14) 

p snz (SKw,, k) + h = 2 sn (~Kw,, k) cn (2Kw,k) x 

dn (2Kw,, k) (2 [2K (w. + a)1 - Z (~Kw,)} 

We note that equation (2.13) follows from the second and third equation of (2.14). Taking 
all we said into account, we conclude that the parameters w,,, p and h can be determined un- 
iquely from the system (2.14) at any value of aE(0, 1/t). 

Letus note two limit cases related to the degeneration of the velocity hodograph. 1) 
E= 0. According to (2.9), (2.12) and (2.11) we have a = B = 0, W(w)= 0, and the region z 
transforms into a rectangle. In the absence of evaporation of the stagnant water the fresh 
water fills the whole layer of soil between two horizontal planes, i.e. the surface soil and 
the surface of the saline ground water. 

2)1= L merger of the channels. Points Band C merge (Fig.1) and the rectangle 
w becomes a half-strip (Fig.3b). We also have k = 0, 6,(wf a, x)~ 1, and by virtue of 
(2.12) we obtain m(w)= 0. 

In practice, the distance between the channels is much greater, as a rule, thanthedepth 
of the bed of saline ground water and the width of the channel. Computations based on the 
first equation of (2.11) show that a similar relation between the geometrical parameters of 
the border is ensured if kz 1, but in this case the representation (2.11) itself becomes 
invariant since the convergence of the series in the theta functions is weakened. It is 
expedient therefore to transform the latter to theta functions using an auxilliary modulus k’. 
The transformation I?= I/*+ iwc,, x1=x-l = K/K’ reduces the first equation of (2.11) to the 
form 

(2.15) 

When k’ = 0, we have x1= 00; region (r (Fig.3c) degenerates into a half-strip {O\<al< 
I/*, u2 > O}, and the border into a chain of equal lenses each of which is connected to the 
adjacent lenses at the corner points. Carrying out in (2.15) a passage to the limit with 

k’ +O we arrive, as a result, at the relation 

dz c m sin (ha) + cos (ha) 
Jr-’ y 

m = ctg ny, 6=1-2a 
d - sin* (na) ’ 

obtained earlier for the problem of the lens at e<p /l/. We note that the solution it- 
self, constructed for this case, and the filtration scheme in the lens described by this solu- 
tion, exhaust themselves at a = p, since a constraint 1 WI <p, exists at the line of separa- 
tion governed by the assumption that the saline waters are stagnant. When s>p, the seg- 
ments corresponding in the W-plane to the depression curve and the line of separation no 
longer intersect, and an additional segment must be brought in to close the boundary of the 
velocity hodograph. Within this segement, the rate of filtration is reduced to the limiting 
value of p admissible at the boundary line. Thus the passage to the case e>p is acoompan- 
ied by a rearrangement of the flow pattern. 

A different pattern is obtained in the case of the border zone. Carrying out the passage 
to the limit &+p in (2.12), using the formulas (2.9) for a and 8, and using the L'Hospital 
rule to evaluate the indeterminacy O/O we find, after some manipulation, 

w (4 le=p = p _ 
PKZ[K(2w-I)] 

n(i+p)+i2KZ[K(2m- I)1 (2.16) 

We can obtain the same expression by inversion of the region wrelative to the circle with the 



center at the point VV = ie, which, in the present case, represents the point of intersection 
of all boundary segments of the hodograph. 

The mapping (2.16) determines, as expected, the hodograph of the same construction (Fig. 
2) as the mapping (2.12). At the point D where w = I/, we have w= 0, and the tangent to 
the line of separation is horizontal as in the case e<p. The initial flow pattern within 
the border remains in force, due to the presence of the segment CD between the depression 
curve and line of separation. Its amortizing action is apparently retained together with the 
filtration scheme, and, when the parameter e increases over the certain interval (P, S*). 
Further, we can expect the appearance of a critical regime similar to those observed in other 
hydrodynamic models of the border /lo-12/, wi_th a half-circle Iw - ip/2 1 <pp2/4 becoming separ- 
ated from the region of the hodograph (Fig.2) and the point Don the line of separation con- 
verted into a cusp. The above problems however require special analysis based on the solution 
of the case e>p. 

Let us note that the limiting case p = co(pz = cc), which can be treated, within the 
framework of the filtration scheme under consideration, as "solidification" of the saline 
water. The line of separation is transformed into a horizontal water confining stratum, and 
it can easily be confirmed by using the equation (2.12) with help of (2.9) for fi, and taking 
into account the fact that $ = 0 on ED. As a result we obtain, for p = o(3, 

and therefore we have ($)/&$).sn = 0, yED = censt. 

3. Computational scheme and analysis of the results. Writing the representation 
(2.15) for various segments of the boundary of a, followed by integration, yields the para- 
metric equations of the corresponding boundary segments of the border, containing three un- 
known constants, namely C,a and k’. Assuming, as stated in Sect.1, that the quantities l,L 
and Ho included in the set of defining parameters are known, we obtain the following system 
of equations: 

GA 

F,(C,a,k')= 
s 

XAB(U) da=I; 13~ =&F (arcsina,k') (3.1) 
0 

u+w/z 
F3(k’)=fS[k’,a(k’)]=+ 5 yao(a)w do= 

‘/* 

1 (‘+iw’v2 
T 1 XED(U)[~ Y~~(r)d~]dm=Ho: 

'I* I/* 

x=Re(-&), y=Im($) 

where F(cp,k’) is an elliptic integral of first kind in the normal Legendre form. The left 

hand part of the last equation, identical to (1.3), is written as an implicit function of the 

parameter k’. The parameter a(k’) appearing in it can be found from the second equation of 
(3.1) from which the constant C(a, k’) has been previously eliminated with help of the first 
equation. 

Computations show that when the parameter k’E(O, 1) is fixed, the function Fa (a. k’) 
decreases monotonously in a while the latter increases over the interval (0, I), and F, (0, k’) = 
co.FI(a, k’)+Z as a+l. Thus when L>l', the parameter a is given uniquely by the second 
equation of (3.1). The function F3(k') is found to be (also according to the computations) 
monotonously increasing over the interval (HoO,oo). The value Ho0 = F:,(O) corresponds to the 

limiting case mentioned above (when the border is transformed into a chain of lenses) and is 

found, in each concrete case, for the formula 

(3.2) 

Here ~kn(x) is the ordinate of the boundary line for the lens, computed with help of the anal- 

ytical solution obtained earlier in /l/, using the parameters 1 and L adopted for the border. 
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Computingoverthe border is carried out in the case Ho>Hoo where (3.1) are used, as before, 

to determine the constants C. a and k’, and this is followed by finding the coordinates of the 

points on the depression curve BC and the boundary line ED. We also find, at every point 
of the depression cilrve computed, the evaporation intensity E. /l/, for which we have in ac- 

cordance with (l-l), 

The second and third equation of (3.1) are solved using the method of half division and 
linear interpolation. The number of terms in the theta function series in all formulas is set 
by the program so as to obtain the prescribed computational accuracy. Integration of the 
equation (2.15) over the whole contour of the region IS within which the function z(U) is 

analytic, serves as control of the computations. 

l-0.5 

5 
IU 

L= 25 

100 
W.p=2 
50 
33 

lO’.e=l 
5 

30 
5u 
90 

14.1Y 248 8.212 282 31.04 2Y.05 
13.88 171 8.088 293 31.00 29.07 
13.17 144 7,906 32~ 30.92 29.13 
7.053 101 4.07Y 830 30.07 29.93 

26.37 496 16.42 48 36.31 24.52 
28.15 156 18.68 264 34.61 25.55 
8.883 3Yl 3.849 30.21 2Y.81 

1.577 
;z 

I I 

30,m 
4.815 53 2.544 266 30.11 23.91 
10.31 140 5.738 285 30.53 29.53 

84 
til 
55 
361 
137 
137 
137 
14 
68 
42O 
71Y 
1382 

Bo rc 

1W.k 

I79 

177 
202 
273 
2846 

aord 
4 

z: 
213 
2U3 
0 

e. 

3er zone ~-15 

HI HI 

I I 

1P.T 
--- 

18.16 1227 155 

18.351 12.261 180 
18.02 12.23 103 

I I 17.6'1 12 46 78 . 
15.521 14.531 57 

rsone Ho=10 
14.92 5.243 186 
15.7014,48 

’ I 
157 

15.00 157 

16.67 
15.35 I 

13.69 
14.75 I :: , 

23.14 3.2% 500 __ ^. 3order zonen,=au 
74Y 1 22.121 18.151 145 

The above table gives the results of computations for the characteristic dimensions of 
the border zone at Ho= 3U and 15. Both series contain four groups of variants, in each of 
which only one of the parameters k,LVP and e varies, with the remaining parameters fixed at 
the values I= 1; L= 50; p= 0.01; E= 0.001 (the linear quantities can be assigned any dimension 
of length). The variants with such a combination appear in the first line of the table, enter 
as pivotal all groups of variants where the lines in the table are interrupted, and form them- 
selves a group with respect to the parameter H, together with the variants of the border zone 
at H,,= 10 and 20. The latter are situated in the empty spaces in the table, appearing in the 
series H,= 15, for the four combinations at which border zone does not exist since Ho,>15. 
Three cases of decomposition of the border zone into a chain of lenses shown in the table are 
connected with the influence of such factors as increased distance between the channels, more 
intense evaporation and reduction in density of the saline water. The graup of variants with 
respect to parameter p is terminated by the limit scheme with a dam mentioned above. 

The table also gives, for every variant of the border zone, the values of the parameter 
k' most sensitive to the relation between the width of the border zone 2L and its mean depth 
Ilo. Let us pause at the variants H, = 15;I= 0.5; L= 50 and H, = 30; 2 = 1; L = 100 (the second 

and sixth line). Here the characteristic dimensions of the border zone and the lens also 
differ from each other by a factor of two. In (2.16) such a difference is related only to the 
coefficient C‘ with the accuracy of up-to which the system (3.1) remains the same for both 
variants compared here. For this reason the value of the parameter k'will also remain the 
same. 

Reducing the magnitude of 1 at fixed values of L and E is accompanied, within the restric- 
tions imposed by (1.2), by the increase in the length L-E of the depression ourve and total 
evaporation from it E(L - 2) equal to the filtration flow from the channel, therefore the mean 
filtration rate E(L -Q/1 through the bottom of the channel is also increased. Similar 
strengthening of the flow at the entry to the border zone intensifies the effect of displace- 
ment of the boundary line manifesting itself by the increase in ifI. The change in the width 
of the channel affects, to even a greater extent, the depression curve. The evaporation in- 
tensity E affects analogously the position of the movable boundaries. In contrast, the vari- 
ation in the parameter p affects insignificantly the depression curve of the border zone, but 
deforms appreciably the dividing line. 
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In the case of several computational variants, a slight increase in the value of N0 over 
its limit admissible value (in the border zone scheme) If,,,, shows the corresponding character- 
istic sizes of the border zone and the lens to be close to each other, and the parameter h' 
in these cases is small. It also diminishes appreciably in the case when L = 100, although 
there are no explicit indications of decomposition of the border zone into lenses. The width 
of the neck CD (Fig.11 remains in this case considerable. Comparing the values of the para- 
meter k' in the three variants of the group relative to L for H, = 30, reflects its sensitiv- 
ity mentioned above to the ratio of the length of the flow region to its mean depth. 

Fig.4 depicts three variants of the 
table from the group related to parameter 
for the value H,,= 30. The mean values of 
the depth Hoe of the corresponding lenses 
are shown with dashed lines. The~depression 
curves for the border rone and the lens are 
close to each other in each of the three vari- 
ants, and are depicted in the figure by a 
single line. 

The authors express due gratitude to 
N.S. Kolodei for assistance in carrying out 
the computations. 

Fig.4 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

8. 

9. 

REFERENCES 

POLUBARINOVA-KOCHINA P.Ia., PRIAZHINSKAIA V.G. and EMIKH V.N., Mathematical Methods in 
Irigation Problems. Moscow, NAUKA, 1969. 

KAPRANOV Iu.I., The form of fresh-water lens for linear evaporation law. PMM Vo1.37, No.3, 
1973. 

POLUBARINOVA-KOCHINA P.Ia., Theory of Motion of Ground Water. Moscow, NAUKA, 1977. 
ARAVIN V.I. and NUMEROV S.N., Theory of Motion of Liquids and Gases in Undeformable Porous 

Medium. GOSTEKHIZDAT, Moscow, 1953. 
GOLUBEV V.V., Lectures on Analytic Theory of Linear Differential Equations. Moscow- 

Leningrad, GOSTEKHTEORIZDAT, 1950. 
GRADSHTHIN I.S. and RYZHIK I.M., Tables of Integrals, Sums, Series and Products, Moscow, 

Fizmatgiz, 1962. 
JAHNKJZ E.,..EMDE F., and L&CH F., Tables of Functions with Formulae and Curves. N.Y. Dover 

Publ. 1945. 
WHITTAKER E.T. and WATSON G.N., A course of Modern Analysis Pt.2, Cambridge Univ. PreSS, 

1940. 
BYRD P.F. and FRIEDMAN M.D., Handbook of elliptic integrals for engineers and scientists. 

B. Springer, 1971. 
10. KAPRANOV Iu.I., Fresh-water lens produced by uniform filtration. PMM Vo1.38, No.6, 1974. 
11. KAPRANOV IU.I., On the border zone of fresh water in the case of a periodic system of 

horizontal drainage pipes. In: Boundary Value Problems of Underground Hydrodynamics. Kiev. 
Izd-c In-ta matem. Akad. Nauk UkrSSR, 1975. 

12. EMIKH V.N., Hydrodynamic model of drainage in the border zone of subsoil fresh water lying 

above saline water. Dokl. Akad. Nauk SSSR, Vol. 252, No.4, 1980. 

Translated by L.K. 


